Download full-text PDF

Source

Publication Analysis

Top Keywords

[morphologic characteristics
4
characteristics brains
4
brains rats
4
rats induced
4
induced moloney
4
moloney mouse
4
mouse sarcoma
4
sarcoma virus]
4
[morphologic
1
brains
1

Similar Publications

: The main aim of this paper was to perform the morphological assessment of children's mandibles of different etiology of dys-functions within the temporomandibular joint, from isolated idiopathic ankylosis to craniofacial malformations co-existing with genetic disorders. : The investigations encompassed seven patients at the age of 0-3. Measurements were conducted on the basis of data obtained from computed tomography.

View Article and Find Full Text PDF

We sought to present and describe all cases of mesonephric adenocarcinoma (MNAC) and mesonephric-like adenocarcinomas (MLAs) at our institution. These cancers are rare, morphologically similar tumors of the female reproductive tract. In this case series, we present 13 new cases of MNAC/MLA that were identified at St.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Euglenids are flagellates with diverse modes of nutrition, including the photosynthetic Euglenophyceae, which acquired plastids via secondary endosymbiosis with green algae, and a diverse assemblage of predators of bacteria and other microeukaryotes. Most heterotrophic euglenids have never been cultivated, so their morphology remains poorly characterized and limited to only a few studies. "Ploeotids" are a paraphyletic group representing much of the diversity of heterotrophic euglenids and are characterized by their feeding apparatus and a rigid pellicle of 10-12 longitudinally arranged strips.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!