Following earlier papers that established the mathematical form of the time dependence of lactate concentrations during recovery from several types of exercise, and that set up a two-compartment model predicting the same time dependences, the present work applies the model to obtain parameters of specific physiological processes. Satisfactory agreement between predictions of the model and our experiment and literature data is obtained in the cases were comparisons can be made, as in the muscular lactate time evolution measured from biopsy samples, in blood flows through the active muscle at the end of exercise or at rest and their evolution during recovery, as well as in the volume of the active muscle compartment. The model prediction that lactate efflux from the muscles to the blood can reduce to zero during recovery is verified experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00428868DOI Listing

Publication Analysis

Top Keywords

active muscle
8
model
5
lactate
4
lactate exercise
4
exercise man
4
man physiological
4
physiological observations
4
observations model
4
model predictions
4
predictions earlier
4

Similar Publications

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing.

J Cachexia Sarcopenia Muscle

February 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.

Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.

View Article and Find Full Text PDF

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Background: Injuries to the common peroneal nerve often result in significant sensory and motor function loss, severely affecting patients' quality of life. Although existing treatments, including medication and surgery, provide some degree of efficacy, their effectiveness is limited by factors such as tolerance and adverse side effects.

Methods: This study aims to evaluate the effects of a 4-week regimen of mirror therapy combined with neuromuscular electrical stimulation on lower limb function, muscle strength, and sensation in patients with common peroneal nerve injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!