Rectal and skin temperatures were recorded over periods as long as 24 h on 52 divers at depths as great as 300 m. Chamber temperature and body temperatures are correlated with depth, and the correlation between chamber temperature and mean skin temperature is evaluated. To ensure thermal balance daytime chamber temperatures must change with depth in meters according to the relationship Tch = 28.23 +/- (0.0058 x depth). Nighttime chamber temperatures must change according to the relationship Tch = 27.6 + (0.0074 x depth). Daytime rectal temperatures change significantly with depth in a way described by a 2nd-order regression line. The linear rate of change is 0.0014 degrees C/m increasing from a sea level value of 36.62 degrees C in heliox. Daytime mean body temperature increases with depth by 0.001 degrees C/m from 35.3 degrees C. Daytime mean skin temperatures very with chamber temperature at a rate of 0.34 degrees C/degrees C, which is identical to that found for an unclothed person in 1 ATA air.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chamber temperature
12
temperatures change
12
body temperatures
8
skin temperatures
8
chamber temperatures
8
change depth
8
relationship tch
8
degrees c/m
8
temperatures
7
depth
6

Similar Publications

This study evaluated the potential usage of phosphorylated egg white protein (P-EWP) nanogels fabricated via microwave-induced phosphorylation modification and gel process and further ultrasonic nanometrization as novel delivery systems for cinnamon bark essential oil (CBEO). Compared to EWP-CBEO nanogels without chemical phosphorylation, the obtained P-EWP-CBEO nanogels have shown smaller average hydrodynamic diameter (133.6 nm), relatively uniform size distribution (polydispersity index around 0.

View Article and Find Full Text PDF

Spontaneous coal fires are a significant source of greenhouse gas emissions, contributing to global warming. However, the lack of reliable estimation methods and research has obscured the full environmental impact of these emissions. This paper presents a novel quantification method for fugitive carbon emissions from spontaneous coal combustion.

View Article and Find Full Text PDF

Ultraviolet radiation vs air filtration to mitigate virus laden aerosol in an occupied clinical room.

J Hazard Mater

January 2025

Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.

Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Background: Blood-based biomarkers, especially P-tau217, have been gaining interest as diagnostic tools to measure Alzheimer disease (AD) pathology.

Methods: We developed a plasma P-tau217 chemiluminescent immunoassay using 4G10E2 and IBA493 as antibodies, a synthetic tau peptide as calibrator, and the Quanterix SP-X imager. Analytical validation performed in a College of American Pathologists-accredited CLIA laboratory involved multiple kit lots, operators, timepoints, and imagers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!