Download full-text PDF |
Source |
---|
BMC Bioinformatics
January 2025
Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.
View Article and Find Full Text PDFJ Pain Res
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Precision Neuroscience, 54 W 21st Street, New York, New York, 10010, UNITED STATES.
Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Rehabilitation Sciences, KU Leuven, B-3001, Leuven, Belgium.
Electroencephalogram (EEG) during pinprick stimulation has the potential to unveil neural mechanisms underlying sensorimotor impairments post-stroke. A proof-of-concept study explored event-related peak pinprick amplitude and oscillatory responses in healthy controls and in people with acute and subuacute motor and sensorimotor stroke, their relationship, and to what extent EEG somatosensory responses can predict sensorimotor impairment. In this study, 26 individuals participated, 10 people with an acute and early subacute sensorimotor stroke, 6 people with an acute and early subacute motor stroke, and 10 age-matched controls.
View Article and Find Full Text PDFElife
January 2025
Department of Neurobiology, Harvard Medical School, Boston, United States.
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!