Download full-text PDF

Source

Publication Analysis

Top Keywords

proposal concept
4
concept "medical
4
"medical cybernetics"]
4
proposal
1
"medical
1
cybernetics"]
1

Similar Publications

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Background And Aims: Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease.

Material And Methods: A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted.

View Article and Find Full Text PDF

Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance.

Adv Mater

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.

Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability.

View Article and Find Full Text PDF

Stacked Scintillators Based Multispectral X-Ray Imaging Featuring Quantum-Cutting Perovskite Scintillators With 570 nm Absorption-Emission Shift.

Adv Mater

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.

Traditional energy-integration X-ray imaging systems rely on total X-ray intensity for image contrast, ignoring energy-specific information. Recently developed multilayer stacked scintillators have enabled multispectral, large-area flat-panel X-ray imaging (FPXI), enhancing material discrimination capabilities. However, increased layering can lead to mutual excitation, which may affect the accurate discrimination of X-ray energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!