Download full-text PDF |
Source |
---|
Semin Immunopathol
January 2025
Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.
View Article and Find Full Text PDFCell Discov
January 2025
Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear.
View Article and Find Full Text PDFCurr Opin Genet Dev
January 2025
State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:
Maternal health and fetal survival during pregnancy encapsulate a paradox of cooperation and competition. One particularly intriguing aspect of this paradox involves the optimal allocation of nutrients between the mother and fetus. Despite this, the precise mechanisms governing nutrient allocation remain elusive.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China. Electronic address:
Blastoids are a promising model for studying early human embryogenesis, but current models have limitations in post-implantation development and lack comprehensive epigenetic assessments, especially regarding genomic imprinting. These issues can lead to failures in accurately modeling early embryonic development. In this study, we developed a high-fidelity blastoid model using 4 chemicals + leukemia inhibitory factor (LIF) (4CL) naive human pluripotent stem cells (hPSCs) (4CL blastoids).
View Article and Find Full Text PDFTalanta
January 2025
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, People's Republic of China.
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!