The response of peripheral blood lymphocytes from normal and persistently lymphocytotic cows to cell membranes and sodium cholate-extracted membrane proteins from normal and tumourous lymph nodes was tested with the macrophage-electrophoretic-mobility test with guinea pig peritoneal macrophages as indicator cells. Lymphocytes from 13 cows with persistent lymphocytosis (PL) showed a positive reaction with cholate extracts from tumour cell membranes. On the other hand, there was a negative reaction with corresponding extracts from normal lymph nodes for 11 animals. 4 of 10 hematologically normal cows also showed a positive reaction against tumour cell membrane extracts. One of these, however, thereafter developed antibodies against BLV glycoprotein gp 51. Using tumour cell membrane preparations as antigen, the 4 cows with PL tested also exhibited a positive reaction, whereas none of 3 hematologically normal cows showed any reactivity. As efforts to detect the main antigenic proteins of BLV (gp 51, p 24) in detergent extracts of tumour cell membranes proved unsuccessful, these findings are thought to provide evidence for the existence of a common non-viral antigen on cell membranes of bovine leukosis tumour cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell membranes
16
tumour cell
16
positive reaction
12
lymphocytes normal
8
normal persistently
8
persistently lymphocytotic
8
lymphocytotic cows
8
bovine leukosis
8
leukosis tumour
8
membrane extracts
8

Similar Publications

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!