1. 1,3-Cyclohexadiene exhibits type I binding spectra with microsomal cytochrome P-450 of either untreated, or phenobarbital- or 3-methylcholanthrene-treated mice. In all cases, two values of Ks can be measured, indicating a different affinity of 1,3-cyclohexadiene towards the cytochrome P-450 species. 2. Mouse-liver microsomal mono-oxygenase metabolizes 1,3-cyclohexadiene to the corresponding mono-epoxide, which is rapidly hydrolysed to trans-3-cyclohexene-1,2-diol and trans-2-cyclohexene-1,4-diol. This hydrolysis was proved to be essentially nonenzymic. 3. A simple gas-chromatographic method was used to quantify the diols and to determine the kinetic constants (Km and Vmax) of 1,3-cyclohexadiene mono-epoxidase. 4. Epoxide formation, as determined by diol production from 1,3-cyclohexadiene metabolism, was NADPH- and O2-dependent and was inhibited by CO and SKF-525A.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498258209038930DOI Listing

Publication Analysis

Top Keywords

microsomal mono-oxygenase
8
cytochrome p-450
8
13-cyclohexadiene
5
metabolism 13-cyclohexadiene
4
13-cyclohexadiene liver
4
liver microsomal
4
mono-oxygenase 13-cyclohexadiene
4
13-cyclohexadiene exhibits
4
exhibits type
4
type binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!