Requirements for large-scale synthesis of the potent antitumor drug 10-deazaminopterin have led to development of a facile synthesis of this compound and its 10-alkyl analogues. The lithium diisopropyl amide generated dianions of appropriate p-alkylbenzoic acids were alkylated with 3-methoxyallyl chloride. The resulting 4-(p-carboxyphenyl)-1-methoxy-1-butenes were brominated at pH 7-8 to afford the 2-bromo-4-(p-carboxyphenyl)butyraldehydes. Condensation with 2,4,5,6-tetraminopyrimidine and subsequent in situ oxidation of the resulting dihydropteridines yielded crystalline 10-alkyl-10-deaza-4-amino-4-deoxypteroic acids. The pteroic acids were coupled with diethyl glutamate via the mixed anhydride method, followed by saponification at room temperature, to give the target 10-deazaminopterins. The 10-alkyl compounds were approximately equipotent to 10-deazaminopterin as growth inhibitors of folate-dependent bacteria. Their abilities to inhibit Lactobacillus casei and L1210 derived dihydrofolate reductases were also similar. Transport properties in vitro were suggestive of an improved therapeutic index for the 10-alkyl analogues. Against L1210 in mice, the percent increase in life span at the LD10 dosage was +151% (methotrexate), +178% (10-deazaminopterin), +235% (10-methyl analogue), and +211% (10-ethyl analogue). 10,10-Dimethyl-10-deazaminopterin was less effective at an equimolar dosage, but the ILS at the maximum dose tested (72 mg/kg) was +135%. It was far less toxic than the other analogues possibly because of enhanced clearance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm00352a026 | DOI Listing |
Environ Sci Technol
April 2020
Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
Bioaccumulation assessment is important for cationic surfactants in light of their use in a wide variety of consumer products and industrial processes. Because they sorb strongly to natural surfaces and to cell membranes, their bioaccumulation behavior is expected to differ from other classes of chemicals. Divided over two mixtures, we exposed rainbow trout to water containing 10 alkyl amines and 2 quaternary alkylammonium surfactants for 7 days, analyzed different fish tissues for surfactant residues, and calculated the tissues' contribution to fish body burden.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2019
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany. Electronic address:
Hypothesis: Molecules forming directed intermolecular hydrogen bonds, such as the well-known benzene-1,3,5-tricarboxamides (BTA) motif, are known to self-assemble into long fibrous structures. However, only a few of these systems have so far demonstrated the ability to form such anisotropic nanostructures, if they are combined with hydrophilic polymers to create an amphiphilic material. Here, we designed BTA-polymer conjugates to investigate whether the directionality of the hydrogen bonds or the ratio of hydrophobic to hydrophilic parts of the molecule, and thus the packing parameter, is decisive for obtaining anisotropic supramolecular structures in water.
View Article and Find Full Text PDFBioorg Med Chem
January 2008
Department of Drug Discovery and Development, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University 1-1-1, Tsushima-Naka, Okayama 700-8530, Japan.
Various novel 10-alkyl-2-deoxo-2-methylthioflavin-5-oxides and their 2-alkylamino derivatives were prepared by facile nitrosative cyclization of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones followed by nucleophilic replacement of the 2-methylthio moiety by different amines, and acidic hydrolysis of the 2-methylthio moiety afforded the corresponding flavin derivatives. 2-Deoxo-2-methylthio-5-deazaalloxazines and 2-deoxo-2-methylthioalloxazine-5-oxides were also prepared by Vilsmeier reaction and by nitrosation of 6-anilino-2-methylthiopyrimidin-4(3H)-ones, respectively. Then, they were subjected to nucleophilic replacement with appropriate amines to produce the corresponding 2-alkylamino derivatives.
View Article and Find Full Text PDFJ Med Chem
April 2000
Department of Chemistry and Biochemistry, Graduate School and University Center, and Queens College of The City University of New York, Flushing, New York 11367, USA.
Analogues of a bipartite compound, dequalinium (DECA) (quinolinium, 1,1'-(1,10-decanediyl)bis(4-amino-2-methyl diiodide)), were tested for inhibition of protein kinase C(alpha) (PKC(alpha)). In vitro assays of monomeric and dimeric analogues support a model in which DECA inhibits PKC(alpha) by an obligatory two-point contact, a unique mechanism among PKC inhibitors. The presence of unsaturation in the center of the C(10)-alkyl linker produced geometric isomers with different inhibitory potencies: cis IC(50) = 52 +/- 12 microM and trans IC(50) = 12 +/- 3 microM, where the trans isomer was equipotent to that of the saturated C(10)-DECA.
View Article and Find Full Text PDFAnal Biochem
August 2000
Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
The use of imino sugars for the potential treatment of lysosomal glycolipid storage diseases and hepatitis virus infections requires accurate, quantitative measurement of these compounds in biological samples. We demonstrate here the versatility of cation-exchange chromatography and pulsed amperometric detection of a range of compounds that differ in both isometric structure and N-alkyl chain length. Although column retention appears dependent upon residual charge on the imine function, successful isocratic separation can be achieved by secondary hydrophobic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!