To gain insight into the role of alkyl-linked lipids in biological systems, we added hexadecylglycerol (a precursor of complex ether-linked lipids) to medium required for the growth of L-M cells in culture. L-M fibroblasts cultured through several generations in the presence of hexadecylglycerol grow at a reduced rate. Experimental cells at their sixth passage, with 2 microgram supplement/ml, double at 50% the rate of control cell populations. Hexadecylglycerol (10 microgram/ml) added 1 day after cell passage does not retard growth; however, within 1 h it decreases the incorporation of choline into the choline glycerophosphatide fraction. Inhibition is specific for choline; ethanolamine incorporation is not affected. The inhibition of choline utilization by hexadecylglycerol-treated cells is dose-dependent and reaches a maximum 12 h after supplementation. Cellular uptake of choline is reduced (approx. 17%) but not as much as the incorporation of choline into the phospholipids (approx. 60% at 12 h). The assimilation of ether lipid precursor into cellular phospholipids was followed by incubating cells with [1-14C]hexadecylglycerol. Incorporation of radioactivity into cellular phospholipids begins to plateau after 24 h, whereas the interference of hexadecylglycerol with choline metabolism could be detected as early as 1 h. The majority of the radioactivity recovered from cells incubated with labeled hexadecylglycerol is localized in the microsomal fraction (56%), where the label was distributed as free hexadecyglycerol, alkylacyl-phospholipids and alkyldiacylglycerols. These results show that the supplementation of a glyceryl ether to L-M fibroblast growth media selectively inhibits the utilization of choline for choline glycerophospholipid biosynthesis and causes a reduction in cell growth rate when cells are continually passaged in the presence of the glyceryl ether.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2760(82)90161-8DOI Listing

Publication Analysis

Top Keywords

glyceryl ether
12
choline
10
ether-linked lipids
8
l-m cells
8
choline utilization
8
incorporation choline
8
choline choline
8
cellular phospholipids
8
cells
7
growth
5

Similar Publications

Stress-Easing Effect of Diacyl Glyceryl Ethers on Anxiety-Related Behavior in Mice.

Foods

November 2024

Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Kawauchi 27-1, Aoba-ku, Sendai 980-8576, Miyagi, Japan.

Stress and anxiety are significant psychological challenges in modern society, which have led to a rapidly growing market for functional foods, including those reported to relieve stress, as alternatives to psychoactive drugs. Among these, diacyl glyceryl ethers (DAGE) derived from deep-sea shark liver oil have gained attention for their strong antioxidant properties and potential mental health benefits. Building on preliminary evidence suggesting DAGE's efficacy in enhancing stress resilience and modulating biochemical pathways associated with reduced oxidative stress, the present study aimed to examine their effects on stress responses in two specific mouse strains.

View Article and Find Full Text PDF

Active Site Engineering of a Glycerol Dehydrogenase Improves its Oxidative Activity and Scope Toward Glycerol Derivatives.

Chemistry

December 2024

Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, Donostia-San Sebastián, 20014, Spain.

Regioselective oxidation of glyceryl alkyl ethers is of utmost importance for the fabrication of substituted hydroxy ketones and enantiopure 1,2-diols as green solvents and pharmaceutical building blocks, respectively. An engineered glycerol dehydrogenase from Bacillus stearothermophilus was described to perform the regioselective oxidation of alkyl glycerol ethers, identifying position 252 as key for accepting larger substrates than glycerol. In this work, we further engineer that position through partial saturation mutagenesis to broaden the substrate scope toward other glycerol derivatives, improving enzyme kinetics and minimizing product inhibition.

View Article and Find Full Text PDF

Sjögren-Larsson syndrome (SLS) is an autosomal recessive leukodystrophy characterized by ichthyosis, intellectual disability, and progressive spastic paralysis caused by biallelic pathogenic variants in the ALDH3A2 gene that encodes the fatty aldehyde dehydrogenase, fatty aldehyde dehydrogenase (FALDH); FALDH catalyzes several metabolic reactions involved in fatty aldehyde oxidation. Only a few studies have been performed to determine the lipid profile of patients with SLS. In a previous postmortem study of the brain of a 65-year-old patient with SLS, lipidomic analysis revealed an accumulation of long-chain unsaturated ether lipid species in the white matter and gray matter.

View Article and Find Full Text PDF

Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent.

View Article and Find Full Text PDF

Sulfated lactosyl archaeol (SLA) archaeosomes as a vaccine adjuvant.

Hum Vaccin Immunother

December 2024

Department of Immunobiology, National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario, Canada.

Archaeosomes are liposomes traditionally comprised of total polar lipids or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glycol- and amino-head groups. We have developed a semi-synthetic archaeosome formulation based on sulfated lactosylarchaeol (SLA) that can be readily synthesized and easily formulated to induce robust humoral and cell-mediated immunity following systemic immunization, enhancing protection in models of infectious disease and cancer. Liposomes composed of SLA have been shown to be a safe and effective vaccine adjuvant to a multitude of antigens in preclinical studies including hepatitis C virus E1/E2 glycoproteins, hepatitis B surface antigen, influenza hemagglutinin, Rabbit Hemorrhagic Disease Virus antigens, and SARS-CoV-2 Spike antigens based on the ancestral strain as well as multiple variants of concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!