The interrelationship of radial glial fibers (RGF) and young neurons migrating to the neocortex of normal and reeler mutant mice at 17 days of gestation are reconstructed from serial and from closely spaced thin sections. The glial fibers are identified unequivocally by correlated light and electron microscopy by means of the Golgi-gold toning method of Fairén and associates. The migrating cell in the normal animal is closely apposed to and coiled about the RGF throughout most of its ascent. In the terminal few microns of its movement, however, it begins rapidly to differentiate and at the same time surrenders its close attachment to the RGF. In the reeler, by contrast, the migrating cell maintains normal apposition to the RGF only until it enters the cortex. There its leading process is unable to pass between the surfaces of the RGF and those of postmigratory elements. Abnormally extensive contact between the glial fiber and the somata of postmigratory cells appears to be sustained in the mutant. The upward migration of the young neuron is terminated in the depths of the cortex and the cell soma gives rise to a profusion of small processes. This study affirms the critical role served by RGF as guides to neuronal migration and provides evidence that abnormal adhesions between postmigratory cells and the RGF obstruct neuronal migration in the reeler mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0165-3806(82)90181-xDOI Listing

Publication Analysis

Top Keywords

neuronal migration
12
glial fibers
12
radial glial
8
reeler mouse
8
migrating cell
8
postmigratory cells
8
rgf
7
obstructed neuronal
4
migration
4
migration radial
4

Similar Publications

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications.

View Article and Find Full Text PDF

Objective: Gain-of-function variants in the KCNT1 gene, which encodes a sodium-activated potassium ion channel, drive severe early onset developmental epileptic encephalopathies including epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. No therapy provides more than sporadic or incremental improvement. Here, we report suppression of seizures in a genetic mouse model of KCNT1 epilepsy by reducing Kcnt1 transcript with divalent small interfering RNA (siRNA), an emerging variant of oligonucleotide technology developed for the central nervous system.

View Article and Find Full Text PDF

Unlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!