Download full-text PDF

Source

Publication Analysis

Top Keywords

[current manifestations
4
manifestations neurorheumatism
4
neurorheumatism problems
4
problems pathomorphosis
4
pathomorphosis recurrences]
4
[current
1
neurorheumatism
1
problems
1
pathomorphosis
1
recurrences]
1

Similar Publications

Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics.

Adv Biotechnol (Singap)

March 2024

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options.

View Article and Find Full Text PDF

Objective: Interstitial lung disease (ILD) is rare, but it is one of the most frequent extra-articular manifestations and a relevant cause of morbidity and mortality in rheumatoid arthritis (RA). Over the past few years, Janus kinase inhibitors (JAKis) have been reported to have promising efficacy in the treatment of active RA, but recent concerns have been raised about their safety profile, namely malignancy and cardiovascular disease, limiting their use to certain patient categories.

Methods: The objective of this narrative review is to summarize the current evidence of the efficacy and safety of JAKis in RA-ILD management, investigating a possible emerging role for this drug class in such subset of patients.

View Article and Find Full Text PDF

An OER catalyst showing both high activity and stability in promoting oxygen evolution is important for its practical application in electrochemical water-splitting. Here, we report the screening of such a catalyst by optimizing the Ni(II)-doping in Co(III)-based layered double hydroxides (LDHs). Such LDH samples tailored with Ni(II)-doping are prepared by an oxidative intercalation reaction where brucite-like Ni(II)Co(II)(OH) (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases, such as myocardial infarction, myocardial ischemia, and sudden cardiac death. It is characterized by excessive proliferation and activation of fibroblasts, transformation into myofibroblasts, and, eventually, excessive deposition of the extracellular matrix, resulting in heart damage. Currently, modern drugs such as angiotensin-converting enzyme inhibitors, diuretics, and β-blockers can improve myocardial fibrosis in clinical treatment, but their therapeutic effect on this disease is limited, with obvious side effects and high cost.

View Article and Find Full Text PDF

The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!