The purity of six European non-certified samples of Pyronin Y was compared with that of two American samples certified by the Biological Stain Commission. The methods used were spectrophotometry and a Methyl Green-Pyronin staining test (both as applied by the Biological Stain Commission), thin layer chromatography, mass spectrometry, determination of pH, and content of some electrolytes. It was found that none of the European batches of Pyronin Y passed the complete test as prescribed by the Biological Stain Commission. Their dye content was uniformly low (between 5 and 19%). Furthermore, thin layer chromatography and mass spectrometry revealed that two of the dye samples contained no Pyronin Y or only traces. It is concluded that assessment of an unknown sample of a dye labelled Pyronin Y should be initiated with thin layer chromatography. The pH and content of electrolytes in an aqueous solution of the dye should also be determined in order to obtain reproducible staining results. Finally, the value of the work performed by the Biological Stain Commission is underlined, although more sophisticated methods are necessary for testing the purity of dyestuffs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01011894DOI Listing

Publication Analysis

Top Keywords

biological stain
16
stain commission
16
thin layer
12
layer chromatography
12
samples pyronin
8
chromatography mass
8
mass spectrometry
8
content electrolytes
8
pyronin
5
purity commercial
4

Similar Publications

Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Prophylactic and therapeutic effects of EsV3 on atherosclerotic lesions in ApoE mice.

BMC Cardiovasc Disord

January 2025

Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Atherosclerosis (AS) is a major contributor to vascular disorders and represents a significant risk to human health. Currently, first-line pharmacotherapies are associated with substantial side effects, and the development of atherosclerosis is closely linked to dietary factors. This study evaluated the effects of a dietary supplement, EsV3, on AS in apolipoprotein E (ApoE) model mice.

View Article and Find Full Text PDF

Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity.

Life Sci Space Res (Amst)

February 2025

Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China. Electronic address:

Background: Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!