The generation of receptors in the animal cell's membrane was simulated by a model consisting of units in four possible states within a hexagonal area (playboard) of n units of a triangular network. The state of each unit was determined by the previous state of itself and of its six nearest neighbours, as regulated by a set of transition rules, which kept the mean relative frequency (m.r.f.) of each state constant. The transition rules were applied to the system exactly n times, regardless whether this involved selection of a unit on 0, 1, 2 or more occasions (programme "random selection with repeat"; RS-R). Comparison to previous results obtained by other ways of application of the rules has shown that the RS-R programme accounted for the highest m.r.f. of quiet (Q) units and Q clusters (sub-patterns), and also for the longest survival of Q configurations through several generations. Functioning of the model under the RS-R programme simulates an integrated system in metastable equilibrium with random local fluctuations, such as the cytoplasmic membrane is imagined to be in standardized environmental conditions. The formation-persistence-disintegration cycle of the sub-patterns is believed to simulate the dynamic generation of transitory receptor configurations in the cell membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00317971 | DOI Listing |
Pharm Res
January 2025
Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.
View Article and Find Full Text PDFJ Chem Phys
January 2025
The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
We explore the role of activity in the occurrence of the Mpemba effect within a system of an active colloid diffusing in a potential landscape devoid of metastable minimum. The Mpemba effect is characterized by a phenomenon where a hotter system reaches equilibrium quicker than a colder one when both are rapidly cooled to the same low temperature. While a minimal asymmetry in the potential landscape is crucial for observing this effect in passive colloidal systems, the introduction of activity can either amplify or reduce the threshold of this minimal asymmetry, resulting in the activity-induced and suppressed Mpemba effect.
View Article and Find Full Text PDFAnal Chem
January 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
DNA reaction equilibrium-based calculations have great potential in thermodynamic characterization, but their widespread applications are hindered by significant measurement deviation of equilibrium concentration. Here, we report the advantages of metastable DNA hybridization in reducing quantification deviation of equilibrium concentration and propose a universal and standardized strategy for measuring aptamer binding energy, termed metastable DNA reference calorimetry (MDRC). We built different MDRC-based algorithms tailored to different aptamer binding models, enabling the calculation of thermodynamic parameters for aptamers with one or more binding sites.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea.
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!