The uptake of 45Ca2+ and secretion of catecholamines by primary cultures of adrenal medulla cells were studied. Nicotine, veratridine, potassium, and Ionomycin stimulate both the accumulation of 45Ca2+ and the secretion of catecholamines. Nicotinic antagonists block 45Ca2+ uptake induced by nicotine, tetrodotoxin blocks 45Ca2+ uptake induced by veratridine, and D600 or secretion induced by Ionomycin. The EC50 for nicotine is 3 microM for catecholamine secretion and 10 microM for 45Ca2+ uptake, while the EC50s for veratridine-stimulated uptake and secretion are approximately the same (75 microM). Kinetic studies show that the uptake of Ca2+ is rapid and appears to precede the secretion of catecholamines, and that the rate of uptake declines rapidly. The 50 mM-K+ show saturation kinetics with respect to external calcium concentrations at about 2 mM. On the other hand, the uptake of 45Ca2+ stimulated by nicotine does not become saturated at external calcium concentrations of 10 mM although the secretion of catecholamines reaches a maximum at external calcium concentrations of 2 mM. The data suggest that depolarizing agents such as veratridine and 50 mM-K+ stimulate 45Ca2+ entry through voltage-sensitive calcium channels, while nicotinic agonists stimulate calcium entry through the acetylcholine receptor ion channels as well as through voltage-sensitive calcium channels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1982.tb08647.xDOI Listing

Publication Analysis

Top Keywords

secretion catecholamines
16
45ca2+ uptake
12
external calcium
12
calcium concentrations
12
secretion
8
catecholamine secretion
8
adrenal medulla
8
medulla cells
8
uptake
8
uptake 45ca2+
8

Similar Publications

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Analysis of Urinary Metanephrines Using Liquid Chromatography Tandem Mass Spectrometry.

Methods Mol Biol

January 2025

Analytic Biochemistry, Calculi and Manual Chemistry, Mass Spectrometry, ARUP Laboratories, Inc., Salt Lake City, UT, USA.

Metanephrines (metanephrine [MN] and normetanephrine [NMN]) are O-methylated metabolites derived from the catecholamines, epinephrine, and norepinephrine, respectively. High concentrations of metanephrines have been observed in individuals with pheochromocytoma, a neuroendocrine tumor. Measurement of metanephrines in urine is used to screen for the tumor.

View Article and Find Full Text PDF

Bioinspired coatings that mimic the adhesive properties of mussels have received considerable attention for surface modification applications. While polydopamine chemistry has been widely used to develop functional coatings, 3,4-dihydroxyphenyl-l-alanine (l-DOPA), a key component of mussel adhesive proteins, has received less attention because, compared to dopamine, it is relatively difficult to form effective coatings on solid substrates in mildly alkaline solutions. Although several methods have been explored to improve the efficiency of l-DOPA coatings, there is still a need to expand the l-DOPA-based surface chemistry.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Pathophysiological Significance of α-Synuclein in Sympathetic Nerves: In Vivo Observations.

Neurology

February 2025

From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.

Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!