Assuming adequate technique, determinations of intracellular phenylalanine and tyrosine concentrations in lymphocytes are very reproducible. The concentrations found in this study (1981) in five homozygotes and five obligate heterozygotes for PKU and seven normals, are identical with the corresponding concentrations found in 1979 in 13 homo- and 19 obligate heterozygotes for PKU and 26 normals. The intracellular concentrations in six homo- and five heterozygotes for hyper-Phe, as determined in the present study, are intermediate between the concentrations found in PKUs and normals in the present and the former study. As in PKUs, there is no difference between homo- and heterozygotes for hyper-Phe. The hypothesis of an intracellular threshold concentration for phenylalanine triggering the production of a toxic metabolite, could explain the severe brain damage observed in untreated PKU-homozygotes, the slight damage in well-treated PKU-homozygotes and in PKU-heterozygotes, and the absence of damage in hyper-Phe homozygotes (and heterozygotes). Also the difference in brain function between homozygotes for both conditions (PKU-treated), can be understood in spite of comparably elevated extracellular phenylalanine concentrations in young patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00569211 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFCell
January 2025
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFACS Omega
December 2024
School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
A critical challenge in boron neutron capture therapy (BNCT) is expanding its effectiveness through the development of novel boron agents with different mechanisms of action than the approved drug 4-borono-l-phenylalanine (BPA). In this study, we developed a small molecule boron carrier, biotinyl--dodecaborate conjugate with an iodophenyl moiety (BBC-IP), incorporating biotin as a ligand for biotin receptors overexpressed in various cancer cells, alongside an albumin ligand and boron source. BBC-IP exhibited high water solubility, minimal cytotoxicity, and superior cellular uptake compared to BPA in both human and mouse cancer cells.
View Article and Find Full Text PDFImmunity
January 2025
Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands. Electronic address:
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A24:02 allele.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!