The average inbreeding coefficient f of a population can be estimated in several different ways based solely on the genotypic frequencies at a single locus. The means and variances of four different estimates have been compared. While the four estimates are equivalent when there are two alleles, the best estimates when there are three or more alleles are based upon total heterozygosity (Formula: see text) where x and y are the expected and observed number of heterozygotes) and the proportion of alleles that are homozygous (Formula: see text) where k = the number of alleles, aii = the number of AiAi homozygotes, and 2aij = the number of AiAj heterozygotes). Both are minimally based estimates of f and have identical sampling variances when all alleles are equally frequent. However, when alleles have different frequencies, the choice between these two estimates depends on the gene frequencies and the true inbreeding coefficient of a population; f2 is the best estimate when the true average inbreeding coefficient is suspected to be low or f = 0, while f1 is best in populations with large average inbreeding coefficients. Approximate sampling variances of these two estimates are given for any f and any number of alleles with arbitrary gene frequencies; these approximations are accurate for samples as small as n = 100. The chi-square and maximum likelihood estimates of f are not as good for realistic sample sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201815PMC
http://dx.doi.org/10.1093/genetics/100.2.339DOI Listing

Publication Analysis

Top Keywords

average inbreeding
12
inbreeding coefficient
12
estimates
8
coefficient population
8
variances estimates
8
formula text
8
number alleles
8
sampling variances
8
gene frequencies
8
alleles
7

Similar Publications

SSR marker-based genetic diversity and structure analyses of var. from different populations.

PeerJ

January 2025

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.

Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.

View Article and Find Full Text PDF

Assessing Genetic Diversity and Population Structure of Western Honey Bees in the Czech Republic Using 22 Microsatellite Loci.

Insects

January 2025

Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

To date, no study has been conducted to investigate the diversity in honeybee populations of in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives ( = 3647) and through the process of capture on flowers ( = 553).

View Article and Find Full Text PDF

Background: The patterns of inbreeding coefficients () and fine spatial genetic structure (FSGS) were evaluated regarding the mating system and inbreeding depression of food-deceptive orchids, , var. , and , from NE Poland.

Methods: We used 455 individuals, representing nine populations of three taxa and AFLPs, to estimate percent polymorphic loci and Nei's gene diversity, which are calculated using the Bayesian method; ; ; FSGS with the pairwise kinship coefficient (); and AMOVA in populations.

View Article and Find Full Text PDF

Background: Runs of homozygosity (ROHs) and heterozygosity (ROHets) serve for the identification of genomic regions as candidates of selection, local adaptation, and population history.

Methods: The present study aimed to comprehensively explore the ROH and ROHet patterns and hotspots in Greek native dairy goats, Eghoria and Skopelos, genotyped with the Illumina Goat SNP50 BeadChip. SNP and functional enrichment analyses were conducted to further characterize hotspots and the candidate genes located within these genomic regions.

View Article and Find Full Text PDF

The genetics of pheasant breeds in Chinese farms has not been investigated yet. Understanding their genetic diversity and population structure is important for future advancements in pheasant breeding. In this study, the whole-genome resequencing was used to analyze a total of 352 samples from 5 pheasant species (American pheasant, White pheasant, Green pheasant, Shenhong pheasant, and Fengxian blue pheasant).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!