1. Protamines were preferentially phosphorylated by the six protein kinase fractions isolated from calf thymus nuclear sap, but histones with the exception of H4 also proved to be acceptable substrates. 2. BSA was not a substrate for the first five kinase fractions, but was the best substrate for the seventh fraction, which also exhibited considerable activity with H4 as substrate. 3. An analysis of in vitro phosphorylation experiments with nuclear sap protein kinases reveals a decreased H2b phosphorylation in H1-depleted chromatin relative to "native" chromatin. 4. With fraction V the initial velocity patterns at fixed ATP levels and varying concentrations of histones exhibit cooperativity at lower concentrations and inhibition at higher concentrations, indicating that nuclear sap kinases might play important roles in sensitive regulatory mechanisms of histone phosphorylation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0020-711x(82)90115-xDOI Listing

Publication Analysis

Top Keywords

nuclear sap
16
sap protein
8
protein kinases
8
calf thymus
8
kinase fractions
8
nuclear
4
kinases calf
4
substrate
4
thymus substrate
4
substrate inhibition
4

Similar Publications

Comparative analysis of and wheat repetitive elements and development of S genome-specific FISH painting.

Genome

January 2025

USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, Nebraska, United States.

(2n=2x=14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of from the section and wheat and found that is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from more than 4 MYA and either has not yet been discovered, or is extinct.

View Article and Find Full Text PDF

Mechanisms for DNA Interplay in Eukaryotic Transcription Factors.

Annu Rev Biophys

January 2025

1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:

Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.

View Article and Find Full Text PDF

Protocol for visualizing the chromatin assembly properties of epigenetic protein complexes via an HTM module-mediated artificial tethering system.

STAR Protoc

January 2025

School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China. Electronic address:

The detailed chromatin assembly processes for many epigenetic regulatory complexes are largely unknown. Here, we present a protocol utilizing heterochromatin-targeting module (HTM) module-mediated chromatin tethering followed by microscopy-based visualization to detect the recruitment priority between two components in Polycomb repressive complex 1 (PRC1). Moreover, we detail procedures for detecting the resultant histone-modifying activities of PRC1 using immunofluorescence (IF) analyses.

View Article and Find Full Text PDF

RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!