In males affected by a special form of X-linked mental retardation a characteristic chromosomal abnormality can be demonstrated, - i.e. a fragile site on the long arm of the X chromosome, fra(X) (q27 or 28) (marker-X chromosome). Male carriers are physically normal, but in most cases show macroorchidism. The demonstration of the marker-X chromosome requires special cell culture conditions, above all a folic acid-deficient medium. The frequency of cells with fragile X chromosome varies interindividually, ranging from 2 to 50%. In female heterozygous carriers the number of cells with fra(X) decreases with age and cannot be demonstrated in some cases. Distribution and frequency of X-linked mental retardation with marker-X chromosome and macro-orchidism are discussed, as well as possibilities of prenatal diagnosis of this disorder.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.
Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
From the Department of Pathology, University of Michigan Medical School, Ann Arbor.
Context.—: High-grade astrocytoma with piloid features (HGAP) is a newly recognized glioma defined by its methylation profile. Understanding of its clinical, histologic, and molecular characteristics continues to evolve.
View Article and Find Full Text PDFSci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFClin Imaging
December 2024
Department of Radiology, Neuroradiology Section, UT Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
We aimed to systematically review and meta-analyze the predictive value of magnetic resonance imaging (MRI)-derived radiomics/end-to-end deep learning (DL) models in predicting glioma alpha thalassemia/mental retardation syndrome X-linked (ATRX) status. We conducted a comprehensive search across four major databases-Web of Science, PubMed, Scopus, and Embase. All the studies that assessed the performance of radiomics and/or end-to-end DL models for predicting glioma ATRX status were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!