The results of the clinical study are presented, concerning the use of a comparatively new method for the topical diagnosis of the chromaffine tissue tumors. The technique is based on the determination of the catecholamine content in several blood plasma samples, collected from different regions of the vena cava inferior and its flows. Twenty patients with suspected hormonal-active tumor of the chromaffine tissue were examined. Pheochromocytoma of the left adrenal was found in 5 patients and of the right one in 1 subject; bilateral adrenal tumors were revealed in 2 patients and extraadrenal chromaffinomas in 2 persons on the ground of the increased local blood catecholamine content in the circulatory channel regions studied.

Download full-text PDF

Source

Publication Analysis

Top Keywords

catecholamine content
12
chromaffine tissue
8
[topical diagnosis
4
diagnosis chromaffin
4
chromaffin tumors
4
tumors based
4
based catecholamine
4
content selected
4
selected plasma
4
plasma specimens]
4

Similar Publications

Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions.

Int J Mol Sci

December 2024

Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.

The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.

View Article and Find Full Text PDF

Background: Venous waveform analysis is an emerging technique to estimate intravascular fluid status by fast Fourier transform deconvolution. Fluid status has been shown proportional to , the amplitude of the fundamental frequency of the waveform's cardiac wave upon deconvolution. Using a porcine model of distributive shock and fluid resuscitation, we sought to determine the influence of norepinephrine on of the central venous waveform.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Cuticular nitrogen economy during development in the cockroach Cryptocercus punctulatus and the termite Neotermes jouteli.

J Insect Physiol

December 2024

Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.

The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period.

View Article and Find Full Text PDF

JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain.

Acta Neuropathol Commun

December 2024

Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!