Resistance to surface denaturation of human and horse immunoglobulin G (IgG) molecules at aqueous NaCl solution--octane interface as a function of aqueous phase pH and NaCl concentration has been studied by monomolecular layer method. Higher conformational stability of these proteins at oil--water interface as compared to that at air-water interface has been demonstrated. At aqueous solutions of 0.15 M NaCl concentration and pH range from 2.8 to 8.0 units no conformational changes were fixed. With the change of NaCl concentration in aqueous phase from 0.15 to 2.0 M at neutral pH horse IgG molecules did not lose their native conformation. Human IgG molecules were only slightly undergoing denaturation process under the same conditions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

igg molecules
12
nacl concentration
12
aqueous nacl
8
aqueous phase
8
aqueous
5
nacl
5
[conformational stability
4
stability immunoglobulin
4
immunoglobulin monomolecular
4
monomolecular layers
4

Similar Publications

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disorder strongly associated with antigen presentation by dendritic cells (DCs). In MG, mucosal tolerance is linked to increased expression of TGF-β mRNA in monocytes. Additionally, monocytic myeloid-derived suppressor cells (M-MDSCs) exhibit negative immunomodulatory effects by suppressing autoreactive T and B cells.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.

View Article and Find Full Text PDF

Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.

View Article and Find Full Text PDF

Novel Sarcoidosis Epitope Augments MHCII, CD80/CD86 Expression, Promotes B-Cell Differentiation and IgG Production.

Am J Respir Cell Mol Biol

January 2025

Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, Michigan, United States;

Numerous chronic human disorders are associated with immune activation by obscure antigen(s). We identified a novel sarcoidosis-epitope (ChainA) by immunoscreening of a novel T7 phage library and confirmed an abundance of ChainA IgG-antibody in sarcoidosis. We tested whether ChainA epitope elicits immune responses through B-cell activation, plasma cell differentiation and antibody production.

View Article and Find Full Text PDF

Interleukin-32 positive immune and resident cells in kidney samples from lupus patients: a pilot study.

Front Immunol

January 2025

Rheumatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy.

Introduction: Lupus nephritis (LN), caused by immune complexes produced or deposited from the bloodstream, is one of the most severe features of Systemic Lupus Erythematosus (SLE) leading to an increased morbidity and mortality. Toll like receptors (TLRs), such as TLR3, TLR7 and TLR9, may play a key role in its pathogenesis. Interleukin-32 (IL-32), a cytokine involved in both innate and adaptive immune responses, has been widely considered in autoimmune-inflammatory rheumatic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!