Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1464-410x.1978.tb04230.xDOI Listing

Publication Analysis

Top Keywords

isolated injury
4
injury renal
4
renal artery
4
artery blunt
4
blunt trauma
4
isolated
1
renal
1
artery
1
blunt
1
trauma
1

Similar Publications

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.

View Article and Find Full Text PDF

Acute Sophora alkaloid poisoning in Hong Kong.

Toxicon

January 2025

Department of Emergency Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Postal address: G/F, Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region China. Electronic address:

Sophora alkaloids, including matrine, oxymatrine, and sophoridine, are quinolizidines found in plants used in traditional Chinese medicine such as Sophora flavescens and Sophora tonkinensis. Reports on acute Sophora alkaloid poisoning in humans outside of mainland China are lacking. This study aimed to characterize the clinical presentations, management, and outcomes of acute poisoning involving Sophora alkaloids in Hong Kong.

View Article and Find Full Text PDF

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Swietenolide inhibits the TXNIP/NLRP3 pathways via Nrf2 activation to ameliorate cognitive dysfunction in diabetic mice.

Neuropharmacology

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China. Electronic address:

Oxidative stress and inflammation play important roles in diabetic-associated cognitive dysfunction (DACD). Swietenolide (Std), isolated from the fruit of Swietenia macrophylla King, exhibits various potent pharmacological activities, including antioxidant, anti-inflammatory, and anti-tumor properties. However, the effects of Std on DACD remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!