AI Article Synopsis

Article Abstract

The interaction of rat uterine cytosol oestrogen-receptor complexes with the synthetic acceptor oligo(dT)--cellulose was studied. Differences in the stability of receptor complexes and their ability to bind to oligo(dT)--cellulose on storage at 4 degrees C or when exposed to increased temperatures indicated heterogeneity of steroid- and oligonucleotide-binding sites. Dilution, dialysis and (NH4)2SO4 precipitation increased the interaction of receptor complexes with oligo(dT)--cellulose (a step termed activation). This increase may be the result of the removal of low-molecular-weight cytosol components which inhibit receptor activation, dimerization to the 5 S form, which binds to oligo(dT)--cellulose, or interaction of 5 S receptor with the oligonucleotide. Cytosol oestradiol--receptor complexes exhibited biphasic dissociation kinetics. All these manipulations resulted in an increase in the proportion of the slow-dissociating component equivalent to the increase in receptor binding to oligo(dT)--cellulose. In contrast, addition of 10mM-sodium molybdate to cytosol decreased both oligo(dT)--cellulose binding and the proportion of receptor with slow dissociation kinetics. The inclusion of proteinase inhibitors did not affect interactions of receptor with oligo(dT)--cellulose nor the dissociation kinetics. These results suggest that oligo(dT)--cellulose binding may serve to quantify the proportion of cytosol receptor in an active form capable of nuclear interaction and to help to ascertain whether a receptor system is fully functional. This binding procedure could prove useful in the evaluation of oestrogen responsivity under normal and pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1158092PMC
http://dx.doi.org/10.1042/bj2020203DOI Listing

Publication Analysis

Top Keywords

dissociation kinetics
12
receptor
10
rat uterine
8
uterine cytosol
8
oligonucleotide-binding sites
8
oligodt--cellulose
8
receptor complexes
8
interaction receptor
8
oligodt--cellulose binding
8
cytosol
6

Similar Publications

The electrochemistry and spectroelectrochemistry of Ru(porphyrin)(NO)(phenoxide) complexes Ru(por)(NO)(OPh) (por = OEP, 1a; TAP, 2a; Ph = CH), Ru(por)(NO)(OAr) (por = OEP, 1b; TAP, 2b; OAr = -OCH-(2-NHC(O)CF)), Ru(por)(NO)(OAr) (por = OEP, 1c; TAP, 2c; OAr = OCH-(2,6-NHC(O)CF); OEP = octaethylporphyrinato dianion, TAP = tetraanisolylporphyrinato dianion) indicate that initial one-electron oxidation results in structure-dependent net reactivity at the phenoxide ligand. Oxidation of 1a generates 1a+, which undergoes a relatively slow rate-limiting second-order follow-up reaction. In contrast, 2a undergoes a diffusion-limited follow-up reaction after oxidation.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.

View Article and Find Full Text PDF

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Low-energy electron driven reactions in 2-bromo-5-nitrothiazole.

J Chem Phys

January 2025

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.

Thiazole derivatives are biologically relevant molecules, used also in pharmaceutical applications. Herein, we report results for electron attachment to 2-bromo-5-nitrothiazole (BNT) in the gas phase. Employing two crossed electron-molecule beam experiments, we determined the efficiency curves of various fragment anions as a function of the initial electron energy between about 0 and 10 eV as well as the emission angle and kinetic energy distributions of Br- and NO2- ions formed from a resonance near 4 eV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!