To determine the relative importance of plasma and luminal pH changes as factors regulating potassium secretion by rat distal tubule, superficial tubules were continuously microperfused in vivo. The effects of changes in plasma pH were examined by producing acute systemic metabolic acidosis or alkalosis and holding luminal flow rate, solute composition, and pH constant by microperfusion. Alternatively, the effect of luminal solution pH was evaluated by microperfusing tubules with solutions buffered to either pH 6.5 or 8.0 at constant systemic acid-base balance. Net transport of Na and K and the pH of the luminal fluid were measured. Results showed that metabolic acidosis inhibited and metabolic alkalosis stimulated potassium secretion. Increased luminal fluid pH, in contrast, did not stimulate potassium transport. In experiments in which metabolic acidosis produced a diuresis, urinary potassium excretion was enhanced compared with hydropenic controls. Free-flow micropuncture studies revealed that the rate of fluid delivery to the distal tubule was 45% greater during acidosis compared with control and that potassium secretion increased in both the distal and collecting tubule. Since the rate of fluid delivery is a potent stimulus of potassium secretion in the distal tubule, it is concluded that the stimulus of increased delivery of fluid, observed in free-flow conditions, masked the inhibitory effect of acidosis on potassium transport. Potassium transport by the distal tubule, during acid-base disorders, is regulated by plasma pH and the rate of delivery of fluid but is not stimulated by alkalinization of the luminal fluid.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1982.242.5.F544DOI Listing

Publication Analysis

Top Keywords

distal tubule
20
potassium transport
16
potassium secretion
16
metabolic acidosis
12
luminal fluid
12
potassium
8
secretion increased
8
rate fluid
8
fluid delivery
8
delivery fluid
8

Similar Publications

Background: Epidermal growth factor is expressed in the distal tubule and secreted in urine (uEGF) after cleavage of membrane-bound pro-EGF. Lower uEGF is associated with kidney disease progression. EGF also plays a role in the regulation of serum magnesium and blood pressure, but whether uEGF is associated with these parameters is unknown.

View Article and Find Full Text PDF

Familial Hyperkalemic Hypertension.

Compr Physiol

December 2024

Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA.

The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.

View Article and Find Full Text PDF

The role of extracellular vesicles in kidney disease progression.

Kidney Res Clin Pract

December 2024

Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea.

Extracellular vesicles (EVs) are nanosized membranous particles released by nearly all cell types, playing a crucial role in mediating cell-to-cell communication. The molecular profile of EVs often reflects that of their originating cells, rendering them valuable for therapeutic and diagnostic purposes. The kidney comprises various cell types, and urinary EVs are predominantly produced from tubular, glomerular, and urinary bladder cells.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is one of the most relevant and prevalent microvascular complications associated with Diabetes Mellitus. In recent years, hyperbaric oxygen therapy (HBO) has been used to mitigate tissue damage caused by hypoxia, thereby attenuating inflammatory processes. This study aimed to explore morphological aspects associated with DN in rats subjected to HBO.

View Article and Find Full Text PDF

Kidney disease in multiple myeloma.

Presse Med

December 2024

Division of Pathology, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada.

Article Synopsis
  • * Quick diagnosis and treatment of kidney problems in these patients are crucial, with therapies focusing on hydration, correcting contributing factors, and administering effective anti-myeloma drugs while considering the patient's kidney function and overall health.
  • * Advanced treatments like plasma exchange may improve kidney recovery in severe cases, and newer combinations of medications show promise, with the possibility of kidney transplantation for some patients in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!