In epithelia that secrete sodium chloride, high-conductance tight junctions between cells have been proposed as the primary pathway for transepithelial sodium flux. We examined the properties of tight junctions in the perfused rectal gland of the dogfish shark during basal secretion and following adenosine 3',5'-cyclic monophosphate stimulation of sodium chloride secretion. Freeze-fracture electron microscopy revealed extensive interdigitation of adjacent cells with an associated amplification in the length of tight junctions per area of luminal surface, averaging 102 +/- 4.7 m/cm2 in outer regions of 80 +/- 6.7 in inner regions of the gland. Marked heterogeneity of junctional structure was present with junctional elements varying from single strands to three duplex elements and junctional depth varying from 15 to 60 nm. In glands perfused with lanthanum chloride, ionic lanthanum filled the intercellular space up to but not through the tight junctions. Characteristics of tight junctions were not different during basal and maximally stimulated sodium chloride secretion. These studies define tight junctions in the rectal gland as an anatomical barrier capable of restricting the passage of relatively small molecules such as urea while providing a greatly amplified junctional area for the passive diffusion of sodium and water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1982.242.5.C388 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA.
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed "Rho flares", which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Faculty of Veterinary Medicine, University of Calgary, Canada. Electronic address:
The intestinal barrier, held together by epithelial cells and intercellular tight junction (TJ) proteins, prevents the penetration of microbial pathogens. Concurrently, intestinal epithelial cells secrete antimicrobial peptides, including cathelicidin. Cathelicidin has direct antibacterial and immunomodulatory functions, although its role in intestinal integrity remains elusive.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!