An agar culture method to permit human erythroid colony growth was described and was compared with the standard methylcellulose culture method. Although the cloning efficiency was greater and the colonies were larger in size in methylcellulose, the relative number of colonies was indistinguishable in the two culture systems after short-term exposure to cytosine arabinoside, adriamycin, tritiated thymidine, or busulfan. Thus, the agar culture system permits the growth of erythroid progenitor cells, which are at the same stage of differentiation as erythroid progenitor cells which can grow in methylcellulose. Since cultures in which agar is used as the semisolid matrix can be fixed and counted at the convenience of the investigator, the cloning of erythroid progenitor cells in agar will greatly facilitate investigation of the proliferative properties and drug sensitivity of erythroid progenitor cells obtained from normal individuals as well as from patients with hematologic neoplasms.
Download full-text PDF |
Source |
---|
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFiScience
January 2025
INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France.
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
Before committing to an erythroid cell lineage, hematopoietic stem cells differentiate along a myeloid cell pathway to generate megakaryocyte-erythroid biopotential progenitor cells in bone marrow. Recent studies suggest that erythroid progenitors (EryPs) could be generated at the level of common myeloid progenitors (CMPs). However, due to a lack of suitable markers, little is known about the early differentiation of these committed EryP cells during CMP development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!