A substantial subpopulation of mammalian brain crude extract microtubules is resistant to cold-temperature disassembly. We propose here that microtubules are rendered cold stable by rare substoichiometric blocks. Mild shearing of rat brain cold-stable microtubules makes them largely cold labile. In addition, cold-stable microtubules can be destabilized by exposure to low concentrations of calmodulin (5 microM) in the presence of calcium at 0 degree C. Cold-disassembled microtubule protein, obtained from sheared or calmodulin-treated cold-stable preparations, re-forms a cold-stable subpopulation upon reassembly. These observations allow strategies for the recycling purification of cold-stable microtubules. Comparison of purified cold-labile and cold-stable material by gel electrophoresis shows enrichment for a few unique polypeptides, of 135, 70-82, and 56 kilodaltons, in the cold-stable preparation. The 64-kilodalton "switch protein", previously identified as uniquely dephosphorylated in cold-stable microtubules, is equally represented in recycled cold-stable and cold-labile microtubule preparations. Furthermore, when disassembled, cold-stable microtubule proteins are passed through a calmodulin affinity column on which the polypeptides characteristic of cold-stable microtubules are specifically retained, the breakthrough (unbound) material repolymerizes into cold-labile microtubules only. Based on the above data, a model is presented in which microtubules are rendered cold stable by the presence of substoichiometric, calmodulin-sensitive blocks that randomly reshuffle upon reassembly of cold-stable microtubules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00532a015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!