Different methods of light scattering measurements for cell suspension and cells in flow are reviewed. The intensity of light scattered at different angles suggests information about the cell size, the nucleus to cell diameter ratio, the thickness of surface membrane, the changes in the internal cell structure state, and about the heterogeneity of cell population. The efficiency of information obtained from the turbidity measurements depends on the geometry of the spectrophotometer. Measurements made with diaphragms allow us to get information about the mean size of biological particles, their form, refractive index, concentration etc. The main advantages of light scattering methods are their high sensitivity, a possibility to use the same species before and after the experiment, and a compatibility with other methods.
Download full-text PDF |
Source |
---|
Biotechnol Appl Biochem
January 2025
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India.
Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Sci Rep
January 2025
Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt.
Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, Aarhus University, Aarhus, 8200, Denmark.
Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!