The ability to synthesize intracellular aspartate decarboxylase was investigated in 19 E. coli strains, out of which strain AB 2472 proved most effective. The maximum accumulation of the enzyme was seen after 6-hour cultivation at pH 6.0, t = 37 degrees C and 4% DL-aspartate used as inducer. By thin-layer chromatography on silufol it was demonstrated that the product of aspartate decarboxylation was beta-alanine.
Download full-text PDF |
Source |
---|
Arch Pharm (Weinheim)
August 2024
Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring.
View Article and Find Full Text PDFJ Biochem
March 2024
Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis.
View Article and Find Full Text PDFInt J Antimicrob Agents
April 2024
Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. Electronic address:
Pyrazinamide (PZA) is considered to be a pivotal drug to shorten the treatment of both drug-susceptible and drug-resistant tuberculosis, but its use is challenged by the reliability of drug-susceptibility testing (DST). PZA resistance in Mycobacterium tuberculosis (MTB) is relevant to the amino acid substitution of pyrazinamidase that is responsible for the conversion of PZA to active pyrazinoic acid (POA). The single nucleotide variants (SNVs) within ribosomal protein S1 (rpsA) or aspartate decarboxylase (panD), the binding targets of POA, has been reported to drive the PZA-resistance signature of MTB.
View Article and Find Full Text PDFAntibiotics (Basel)
April 2023
Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA.
Pathogenic bacteria possess a remarkable ability to adapt to fluctuating host environments and cause infection. Disturbing bacterial central metabolism through inhibition of 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) has the potential to hinder bacterial adaptation, representing a new antibacterial strategy. DXPS functions at a critical metabolic branchpoint to produce the metabolite DXP, a precursor to pyridoxal-5-phosphate (PLP), thiamin diphosphate (ThDP) and isoprenoids presumed essential for metabolic adaptation in nutrient-limited host environments.
View Article and Find Full Text PDFFront Microbiol
March 2023
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!