AI Article Synopsis

  • Neutrophil specific granules are critical for various immune functions, including cell movement and inflammation management, and their deficiency in a 9-year-old boy led to significant immune system irregularities.
  • The patient displayed decreased accumulation of neutrophils and monocytes in response to skin testing, along with an atypical febrile response during infections that indicated impaired immune activation.
  • In vitro tests showed the boy's neutrophils had altered cell structure and behavior, impacting their chemotaxis, aggregation response, and overall bactericidal activity, pointing to a severe deficiency in their normal immune functions.

Article Abstract

It has been suggested that neutrophil (PMN) specific granules are important in cell aggregation, locomotion, hydroxyl radical formation, and in extracellular functions such as the generation of complement-related inflammatory mediators (C5a) and the feedback regulation of myelopoiesis. In the current studies, a 9-yr-old boy with a history of recurrent infections and specific granule deficiency (absent lactoferrin, B-12 binding proteins, and characteristic specific granules on sucrose gradient centrifugation of cell homogenates) was studied to assess some of these concepts. In vivo, the patient had decreased PMN and monocyte accumulation into Rebuck skin windows but an expected febrile episode with an associated neutropenia (PMN margination) and neutrophilia (mobilization of marrow reserves) in response to intravenous endotoxin. In vitro, the patient's resting PMN showed increased ruffling, increased surface-to-volume ratio, and increased numbers of centriole-associated microtubules. His PMN showed a significant decrease in cell negative surface charge (which may relate to aggregation) in response to several stimuli and adhered better than normally to plastic. In addition, his PMN aggregated normally in response to the chemoattractant f-met-leu-phe, although the subsequent disaggregation normally seen with PMN did not occur with the patient's cells. Chemotaxis of the patient's PMN to several stimuli was abnormal, and specific saturable and displaceable binding of the chemoattractant f-met-leu-[3H]phe was decreased. Similarly, following incubation with secretagogues, there was a less than normal increase in f-met-leu-[3H]phe binding and an absence of the normal increases in PMN surface area. The patient's PMN bactericidal activity, stimulated oxygen metabolism (cytochrome-c reduction, chemiluminescence, and NBT reduction), and elicited changes in membrane potential were also abnormal. Studies assessing the mechanism for the abnormal monocyte accumulation into skin windows indicated the patient's monocyte chemotaxis was better than normal in vitro. However, the patient's PMN homogenates lacked a stimulus of monocyte locomotion and did not generate chemotactic activity normally from serum. Thus, the data indicate that specific granule constituents are not required for neutrophil margination in vivo or aggregation in vitro. However, the data support the concept that PMN-specific granules are important for PMN locomotion and oxidative metabolism. In addition, extracellular release of specific granule constituents appears to be important for amplification of the initial and subsequent phases of the inflammatory response.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pmn
12
specific granule
12
patient's pmn
12
granule deficiency
8
inflammatory response
8
specific granules
8
monocyte accumulation
8
skin windows
8
vitro patient's
8
granule constituents
8

Similar Publications

Olive cake was incorporated at a low inclusion rate (3.7%) into the rations of dairy cows through partial substitution of maize, and its effects on milk production, general health, and fertility traits were investigated. Multiparous purebred Holstein dairy cows (n = 148) were divided into two groups: a treated group (n = 86) and a control group (n = 62).

View Article and Find Full Text PDF

Waste milk consumption in dairy calves: Effects on innate immunity and inflammatory profile.

Vet Immunol Immunopathol

January 2025

Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil. Electronic address:

Waste milk (WM) is commonly used in calf feeding to reduce rearing costs; however, its effects on the innate immune response remain unexplored. Therefore, this study aimed to evaluate the effects of WM on the innate immune response and inflammatory profile of pre-weaned dairy calves. Thirty male Holstein calves were assigned to receive pasteurized waste milk (PWM), saleable milk (SM), and WM (n = 10 in each group).

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Enniatins (ENNs) affect human and animal health. Different ENN analogs have been identified, but Enniatin B (ENN B) is the most detected in foods and feeds. This study investigated the effect of ENN B on bovine polymorphonuclear leukocytes (PMNs) challenged with increasing ENN B concentrations (0.

View Article and Find Full Text PDF

The accumulation of myeloid-derived suppressor cells participates in abdominal infection-induced tumor progression through the PD-L1/PD-1 axis.

Mol Oncol

January 2025

Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.

Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with gastrectomy being the primary treatment option. Sepsis, a systemic inflammatory response to infection, may influence tumor growth by creating an immunosuppressive environment conducive to cancer cell proliferation and metastasis. Here, the effect of abdominal infection on tumor growth and metastasis was investigated through the implementation of a peritoneal metastasis model and a subcutaneous tumor model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!