Bacteria, yeasts and fungi suspended in a dextran solution were added to ampoules containing strips of filter paper which were dried without vacuum conditions. The ampoules were sealed and stored in the dark at room temperature. Viability counts were made of the original suspension immediately after drying and after storage periods of 3-48 months. Although bacterial cultures of many general did not show much resistance against dry conditions, bacteria of 13 other general had survived well or moderately after 4 years of storage. Most of the dried yeast cultures had survived after this period. Of the 16 fungal genera tested, species of 6 genera exhibited growth after 4 years. Results of this study were compared with those of two other preservation methods by which the same microorganisms were used.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00443240DOI Listing

Publication Analysis

Top Keywords

drying storage
8
survival microorganisms
4
microorganisms drying
4
storage bacteria
4
bacteria yeasts
4
yeasts fungi
4
fungi suspended
4
suspended dextran
4
dextran solution
4
solution ampoules
4

Similar Publications

The objective was to evaluate the sensitivity of Piptadenia gonoacantha seeds to desiccation and storage conditions. The seeds were subjected to artificial drying in a forced air convection oven (39.7 °C ± 0.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

Effect of formulation composition on trastuzumab stability.

Int J Pharm

January 2025

Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States. Electronic address:

For monoclonal antibody drug products as for other biologics, while the innovator drug products first becomes commercially available, they are often followed by one or more biosimilar products. These biosimilars often differ from the innovator product, as well as from each other, in their formulation composition. However, the impact of the formulation composition on the stability of the active pharmaceutical ingredient subjected to different 'stresses' is still not understood.

View Article and Find Full Text PDF

The abundant yet underutilized olive leaves, a renewable by-product of olive cultivation, offer untapped potential for producing high-value bioactive compounds, notably oleacein. Existing extraction methods are often inefficient, yielding low quantities of oleacein due to enzymatic degradation of its precursor, oleuropein, during conventional processing and storage. This study aimed to overcome these limitations by exploring a novel methodology based on freeze-drying, to facilitate the in situ enzymatic biotransformation of oleuropein into oleacein directly within the plant matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!