Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/9.1.47 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:
Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe and Zn can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe and Zn provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH and OH/NH)) was developed for the simultaneous detection of Fe and Zn.
View Article and Find Full Text PDFAnalyst
December 2024
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China.
The purpose of the present study is to develop an easy and effective one-step pyrolytic method for synthesizing carbon dots (CDs) derived from folic acid (FA), denoted herein as FACDs. This method is green, inexpensive, and simplifies the synthesis of fluorescent carbon nanomaterials with enhanced and stable fluorescence. Moreover, the as-prepared FACDs are effective in the sensitive and selective detection of cysteine (Cys) by such a "turn-on" mechanism of fluorescence.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Biochemical Science "A. Rossi Fanelli", Faculty of Farmacy and Medicine, Sapienza University of Rome, Pl. A. Moro 5, 00185 Rome, Italy.
Adv Mater
November 2024
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Achieving single-phase full-spectrum white light (SFWL) phosphors is a central goal in the optical field because they simplify white-LEDs assembly and avoid long-term color instability. Despite many approaches are developed, current SFWL phosphors still suffer from chromaticity drift due to inconsistent thermal quenching of multiple emitting centers. Herein, an absolutely structural disorder strategy is established to develop a single-emitting center-based SFWL phosphor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!