Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0047-0740(81)90068-1 | DOI Listing |
Small
January 2025
College of Semiconductors (College of Integrated Circuits), Hunan University Changsha, Hunan, 410082, P. R. China.
Tin-based halide perovskites (ASnX) have garnered substantial interest due to their unique photoelectric properties and environmentally friendly features. The A-site ions tuning strategy has been proven to promote material performance. However, there is a lack of systematic research on the optical properties, lattice structure variation, and band structure evolution in tin-based perovskites when the A-site ions tune from organic to inorganic.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
Nickel oxide (NiO) is considered as a potential hole transport material in the fabrication of lead-tin (Pb-Sn) perovskite solar cells (PSCs) for tandem applications. However, the energy level mismatch and unfavorable redox reactions between Ni species and Sn at the NiO/perovskite interface pose challenges. Herein, high-performance Pb-Sn-based inorganic PSCs are demonstrated by modulating the NiO/perovskite interface with a multifunctional 4-aminobenzenesulfonic acid (4-ABSA) interlayer.
View Article and Find Full Text PDFChem Asian J
January 2025
China Three Gorges University, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, CHINA.
The Keggin clusters are one kind of the most representative molecular structures in the field of metal-oxo clusters. Although the different types of Keggin clusters with various components were reported, the research about γ-Keggin isomer remains less developed. This is ascribed to the difficulty in obtaining the stable pure γ-Keggin cluster for the structural isomerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!