A major portion of tetracycline accumulation by susceptible bacterial cells is energy dependent. Inner membrane vesicles prepared from susceptible Escherichia coli cells concentrated tetracycline 2.5 to 5 times above the external concentration when the electron transport substrate D-lactate or reduced phenazine methosulfate was added. This stimulation was reversed by cyanide, 2,4-dinitrophenol, and carbonyl cyanide m-chlorophenyl hydrazone. These vesicles data showed that proton motive force alone could energize tetracycline uptake. The lactate-dependent uptake had a pH optimum of 6.9 and a magnesium optimum of 1 mM and was not saturable up to 400 microM tetracycline. Although the vesicles were not as active as cells in concentrating tetracycline, they were less active to a similar extent in concentrating tetracycline, they were less active to a similar extent in concentrating proline, the transport of which is known to be solely proton motive force dependent. Therefore, we concluded that the active uptake of tetracycline in susceptible cells was largely, if not solely, energized by proton motive force.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC181692PMC
http://dx.doi.org/10.1128/AAC.20.3.307DOI Listing

Publication Analysis

Top Keywords

proton motive
12
motive force
12
active uptake
8
tetracycline
8
uptake tetracycline
8
membrane vesicles
8
susceptible escherichia
8
escherichia coli
8
concentrating tetracycline
8
tetracycline active
8

Similar Publications

Targeting membrane integrity and imidazoleglycerol-phosphate dehydratase: Sanguinarine multifaceted approach against Staphylococcus aureus biofilms.

Phytomedicine

January 2025

Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: Staphylococcus aureus is an opportunistic pathogen capable of readily forming biofilms, which can result in life-threatening infections involving different organs. Sanguinarine are benzo[c]phenanthridine alkaloids extracted from the Sanguinaria canadensis L. (Papaveraceae), which have a wide range of biological activities.

View Article and Find Full Text PDF

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink.

Biomolecules

January 2025

School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase.

View Article and Find Full Text PDF

Non-antibiotic conditions, including organophosphorus pesticides (OPPs), have been implicated in the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) to varying degrees. While most studies focus on the toxicity of OPPs to humans and animals, their roles in ARG dissemination remain largely unexplored. In this study, we investigate the effects and involved molecular mechanisms of environmentally relevant concentrations of malathion and dimethoate, two representative OPPs, on plasmid-mediated conjugal transfer.

View Article and Find Full Text PDF

Life sets off a cascade of machines.

Proc Natl Acad Sci U S A

January 2025

Center for Physics and Biology, Rockefeller University, New York, NY 10065.

Life is invasive, occupying all physically accessible scales, stretching between almost nothing (protons, electrons, and photons) and almost everything (the whole biosphere). Motivated by seventeenth-century insights into this infinity, this paper proposes a language to discuss life as an infinite double cascade of machines making machines. Using this simplified language, we first discuss the micro-cascade proposed by Leibniz, which describes how the self-reproducing machine of the cell is built of smaller submachines down to the atomic scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!