[U-14C]Tyrosine-labeled noniodinated hog thyroglobulin was iodinated enzymatically and nonenzymatically (iodine, iodide-chloramine-T, pH 7.4, or iodine monochloride, pH 8.1). This led to similar levels of iodine incorporation as well as of thyroid hormone synthesis. Iodine monochloride at pH 5.5 formed "hormonogenic" iodotyrosine residues, but no hormone residues. The latter were formed when the iodinated thyroglobulin was brought to pH 8.5 and then treated with horseradish peroxidase and glucose-glucose oxidase in the absence of iodide and iodine monochloride. Enzymatic hydrolysates contained labeled hormone and pyruvic acid; acid hydrolysates labeled thyronine and acetic acid. (Treatment with acid converts hormone to thyronine and pyruvic to acetic acid.) After borohydride treatment, labeled alanine was present instead of pyruvic or acetic acid. The pyruvic acid/hormone, acetic acid/thyronine, alanine/hormone, and alanine/thyronine molar ratios always were 1, independently of the method of iodination. The "coupling reaction" consists of an oxidation step and nonoxidative coupling and decomposition steps. The oxidation step may be either enzymatic or nonenzymatic. The decomposition step always leads to 1 dehydroalanine residue for each hormone residue synthesized. (Dehydroalanine residues appear in the various hydrolysates as acetic acid, pyruvic acid, and alanine, respectively.) Since proper alignment of 2 iodotyrosine residues is a prerequisite for coupling, a model is proposed according to which oxidation of hormonogenic iodotyrosine residues leads to a charge transfer complex which is the same zwitterion-biradical resonance hybrid no matter whether it resulted from a free radical (enzymatic) or an ionic (nonenzymatic) oxidation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acetic acid
16
iodine monochloride
12
iodotyrosine residues
12
thyroid hormone
8
hormone synthesis
8
acid
8
pyruvic acid
8
pyruvic acetic
8
acid pyruvic
8
oxidation step
8

Similar Publications

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Experimental and DFT Studies of Intermolecular Interaction-Assisted Oxindole Cyclization Reaction of Di-t-butyl 2-Aminophenyl-2-methyl Malonate.

Chem Pharm Bull (Tokyo)

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) osteomyelitis of the maxilla is a rare condition in paediatric patients, with limited evidence available for optimal treatment protocols. We present the case of a paediatric patient in the early childhood age group with post-traumatic maxillary osteomyelitis caused by MRSA. The child developed facial swelling following trauma, and imaging revealed maxillary sinus wall thickening and bone erosions.

View Article and Find Full Text PDF

Deep eutectic solvent-enabled lignocellulosic biomass valorization: Toward understanding of biomass pretreatment, lignin dissolution, and lignin's antioxidant activity.

Int J Biol Macromol

January 2025

State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:

A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!