Logarithmically growing cells of Escherichia coli were fixed with glutaraldehyde and incubated with antimaltose-binding protein Fab coupled to horseradish peroxide (molecular weight of the complex 80,000). The position of this complex within the cell envelope was determined by reacting with diaminobenzidine-H2O2, staining with osmium tetroxide and processing for thin section electron microscopy. The following observations were made: (i) induction of the maltose-binding protein resulted in swelling and staining of the outer membrane; (ii) the swelling and staining was more prominent in short cells, less prominent or absent in long cells; (iii) rare examples exhibited granular staining in the space between the plasma membrane and the peptidoglycan layer. These stainings were observable mainly in pole caps; (iv) a mutant lacking the receptor for phage lambda showed altered staining pattern. Treatment of glutaraldehyde-fixed cells with EDTA-lysozyme prevented the specific labelling of the maltose-binding protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00425258 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; In Vitro Diagnostic Technology Innovation Center for Nanobody, No. 1166 Yiyuan Road, Nanchang, Jiangxi Province 330038, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Nanchang 330200, China. Electronic address:
Lateral flow immunoassays (LFAs) are widely used in point-of-care testing (POCT) for detecting small molecules. However, their application is often hindered by the complex synthesis of traditional chemically synthesized antigens. Nanobody-based coating antigen mimics have shown excellent analytical performance in various immunoassay platforms, but their application in LFAs still faces challenges.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
Hyaluronan (HA) is one of the crucial components of the extracellular matrix in vertebrates and is synthesized by three hyaluronan synthases (HASs), namely HAS1, HAS2, and HAS3. The low expression level of HASs in normal keratinocytes and other various types of cells presents a recognized challenge, impeding biological and pathological research on their localization. In this study, the human proteins HAS1, HAS2, and HAS3 with fused maltose-binding protein (MBP) tags were successfully expressed at high levels and purified for the first time in HEK293F cells.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China.
C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!