Download full-text PDF |
Source |
---|
Front Hum Neurosci
December 2024
Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.
Introduction: Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex.
Method: To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS.
Hum Brain Mapp
December 2024
Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.
Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique used to modulates cortical brain activity. However, its effects on brain metabolites within the dorsolateral prefrontal cortex (DLPFC), a crucial area targeted for brain stimulation in mental disorders, remain unclear. This study aimed to investigate whether prefrontal tDCS over the left and right DLPFC modulates levels of key metabolites, including gamma-aminobutyric acid (GABA), glutamate (Glu), glutamine/glutamate (Glx), N-acetylaspartate (NAA), near to the target region and to explore potential sex-specific effects on these metabolite concentrations.
View Article and Find Full Text PDFFront Hum Neurosci
November 2024
School of Mental Health, Bengbu Medical University, Bengbu, China.
Background: Temporal interference electrical stimulation (TI) is promise in targeting deep brain regions focally. However, limited electric field intensity challenges its efficacy.
Objective: This study aimed to introduce a high-current TI electrical stimulation protocol to enhance its intensity and evaluate its safety and efficacy when applied to the primary motor cortex (M1) in the human brain.
Commun Biol
November 2024
School of Psychology, Shenzhen University, Shenzhen, China.
Previous studies suggest that pain perception is greatly shaped by anticipation, with M1 and DLPFC involved in this process. We hypothesized that high-frequency rTMS targeting these regions could alter pain anticipation and thereby reduce pain perception. In a double-blind, sham-controlled study, healthy participants received 10 Hz rTMS to M1, DLPFC, or a sham treatment.
View Article and Find Full Text PDFJ Rehabil Med
November 2024
Department of Clinical Neurophysiology, Linköping University Hospital, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Sweden.
Objective: To corroborate findings suggesting that spinally targeted paired associative stimulation improves upper extremity motor function in chronic incomplete spinal cord injury.
Design: Prospective interventional study.
Subjects: Five adults with chronic tetraplegia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!