The substrate specificity of the acceptor site of peptidyltransferase of Escherichia coli 70S ribosomes was investigated in the fMet-tRNA.A-U-G.70S ribosome and AcPhe-tRNA.poly(U).70S ribosome systems by using a series of 2'- and 3'-aminoacyldinucleoside phosphates as acceptors. These chemically synthesized compounds are analogues of the 3' termini of either 2'(3')-, 2'-, or 3'-aminoacyl transfer ribonucleic acids (AA-tRNAs) of the types C-A-aa, C-2'-dA-aa, C-3'-dA-aa, C-3'-dA-3'-NH-aa, and C-2'-dA-2'-NH-aa (aa = Phe, D-Phe, Lys, Leu, Ala, Glu, Pro, Gly, Asp, Met, and alpha-aminoisobutyryl). It was found that the 3'-aminoacyl derivatives of optically active amino acids are much better acceptors of N-formyl-L-methionine (fMet) or N-acetyl-L-phenylalanine (AcPhe) residues than the isomeric 2'-aminoacyl derivatives with affinity constant ratios (KM 2'/3') greater than 100. Likewise, C-A(D-Phe) is a weaker acceptor than the corresponding L derivative C-A-Phe. In contrast, all glycyl derivatives (C-2'-dA-Gly, C-3'-dA-Gly, C-3'-dA-3'-NH-Gly and C-2'-dA-2'-NH-Gly) are good acceptors of the fMet residue, with ratios (KM 2'/3') of approximately 2. On the basis of these results, a model for the stereochemical control of the peptidyl-transferase reaction is proposed. It assigns a major role to the orientation of the amino acid side chain in 2'- or 3'-AA-tRNA. A detailed model of the interaction of the acceptor terminus of 3'-AA-tRNA with the acceptor site of peptidyltransferase is also proposed. The model is strikingly similar to those for the active sites of proteolytic enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00504a002DOI Listing

Publication Analysis

Top Keywords

stereochemical control
8
amino acid
8
acceptor site
8
site peptidyltransferase
8
ratios 2'/3'
8
acceptor
5
control ribosomal
4
ribosomal peptidyltransferase
4
peptidyltransferase reaction
4
reaction role
4

Similar Publications

We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.

View Article and Find Full Text PDF

Mechanism of C-3 Acyl Neighboring Group Participation in Mannuronic Acid Glycosyl Donors.

J Am Chem Soc

December 2024

Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands.

One of the main challenges in oligosaccharide synthesis is the stereoselective introduction of the glycosidic bond. In order to understand and control glycosylation reactions, thorough mechanistic studies are required. Reaction intermediates found by NMR spectroscopy often cannot explain the glycosylation's stereochemical outcome.

View Article and Find Full Text PDF

Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.

View Article and Find Full Text PDF

Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts.

View Article and Find Full Text PDF

Control over stereochemistry in poly(vinyl ether)s leads to a notable change in their physical properties, yet remains a grand challenge. Here, we demonstrate the bulk stereoselective cationic polymerization of vinyl ethers using ZrCl coordinated with a spirocyclic phosphoric acid (SPA). The widely variable substituents in SPAs exert a profound impact on the stereochemical and activity outcome of the polymerization: the % m of poly(vinyl ether)s linearly increases with the Hammett substituent constant (σ) of SPAs; the catalytic activity increases with the σ; the large steric hindrance groups lead to decreased polymerization activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!