Minerals formed by organisms.

Science

Published: March 1981

Organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere. The initial precipitates may differ from the form in which they are finally stabilized, or during development of the organism one mineral may substitute for another. Biogenic minerals commonly have attributes which distinguish them from their inorganic counterparts. They fulfill important biological functions. They have been formed in ever-increasing amounts during the last 600 million years and have radically altered the character of the biosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.7008198DOI Listing

Publication Analysis

Top Keywords

minerals formed
8
formed organisms
4
organisms organisms
4
organisms capable
4
capable forming
4
forming diverse
4
diverse array
4
array minerals
4
formed inorganically
4
inorganically biosphere
4

Similar Publications

Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization.

Polymers (Basel)

December 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.

View Article and Find Full Text PDF

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates.

View Article and Find Full Text PDF

Wine lees, the second most significant by-product of winemaking after grape pomace, have received relatively little attention regarding their potential for valorization. Despite their rich content in bioactive components such as β-glucans, industrial utilization faces challenges, particularly due to variability in their composition. This inconsistency impacts the reliability and standardization of final products, limiting broader adoption in industrial applications.

View Article and Find Full Text PDF

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!