Human Ia antigens were extensively purified (1390-fold increase in specific activity) in 32% yield from BRI 8 cells, a lymphoblastoid B-cell line. Purification was monitored by using allogeneic antisera arising by foetal-maternal stimulation. The product, a glycoprotein fraction, contained the Ia antigens, the HLA-A and -B antigens, and a glycoprotein of unknown function. The glycoprotein fraction was composed of four glycosylated polypeptides with molecular weights of 43,000, 39,000, 33,000, and 28,000, and beta2-microglobulin; no polypeptide was linked to another by disulphide bridges. The A and B antigens only were absorbed by antibody against beta2-microglobulin. The Ia antigens comprised one each of the 33,000 and 28,000 molecular weight glycosylated polypeptides noncovalently linked together. Thus, only these chains were absorbed by xenogeneic anti-Ia antisera and were cross-linked by dimethyl-3-3'-dithiobispropionimidate dihydrochloride. The dimeric molecule bound deoxycholate (0.26 g/g of protein) and, when solubilized in deoxycholate, has a molecular weight of 77,000. The Ia allo- and xeno-antigenic activities were labile to heating and proteolysis and are probably determined by the polypeptide structure. Xenogeneic specific anti-Ia antisera were raised in rabbits and mice by immunizing with the glycoprotein fraction. These antisera reacted with B lymphocytes and monocytes but not T lymphocytes and fibroblasts. Their Fab fragments blocked the cytotoxicity of the allogeneic antisera for B lymphocytes and were potent inhibitors of the mixed lymphocyte reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3083.1977.tb02101.xDOI Listing

Publication Analysis

Top Keywords

glycoprotein fraction
12
human antigens
8
allogeneic antisera
8
glycosylated polypeptides
8
33000 28000
8
molecular weight
8
anti-ia antisera
8
antigens
6
antisera
5
cellular distrubtion
4

Similar Publications

A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Accurate determination of plasma protein binding (PPB) is crucial in understanding the pharmacokinetics and pharmacodynamics of drugs, particularly for highly bound compounds where traditional methods may fall short. In this study, we present a pioneering approach for the precise determination of PPB that takes advantage of the lipophilicity of highly bound compounds. Twenty four highly bound compounds (with a fraction unbound (f) from 10 to 10) were tested with the most commonly used method, i.

View Article and Find Full Text PDF

Whey protein phospholipid concentrate (WPPC) is a co-product generated during the manufacture of whey protein isolate. WPPC is depleted of simple sugars but contains numerous glycoconjugates embedded in the milk fat globule membrane, suggesting this fraction may serve as a carbon source for growth of bifidobacteria commonly enriched in breast fed infants. In this work, we demonstrate that WPPC can serve as a sole carbon source for the growth of Bifidobacterium bifidum, a species common to the breastfed infant and routinely used as a probiotic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!