Melibiose transport in Salmonella typhimurium was investigated. Radioactive melibiose was prepared and the melibiose transport system was characterized. Na+ and Li+ stimulated transport of melibiose by lowering the Km value without affecting the Vmax value; Km values were 0.50 mM in the absence of Na+ or Li+ and 0.12 mM in the presence of 10 mM NaCl or 10 mM LiCl. The Vmax value was 140 nmol/min per mg of protein. Melibiose was a much more effective substrate than methyl-beta-thiogalactoside. An Na+-melibiose cotransport mechanism was suggested by three types of experiments. First, the influx of Na+ induced by melibiose influx was observed with melibiose-induced cells. Second, the efflux of H+ induced by melibiose influx was observed only in the presence of Na+ or Li+, demonstrating the absence of H+-melibiose cotransport. Third, either an artificially imposed Na+ gradient or membrane potential could drive melibiose uptake in cells. Formation of an Na+ gradient in S. typhimurium was shown to be coupled to H+ by three methods. First, uncoupler-sensitive extrusion of Na+ was energized by respiration or glycolysis. Second, efflux of H+ induced by Na+ influx was detected. Third, a change in the pH gradient was elicited by imposing an Na+ gradient in energized membrane vesicles. Thus, it is concluded that the mechanism for Na+ extrusion is an Na+/H+ antiport. The Na+/H+ antiporter is a transformer which converts an electrochemical H+ gradient to an Na+ gradient, which then drives melibiose transport. Li+ was inhibitory for the growth of cells when melibiose was the sole carbon source, even though Li+ stimulated melibiose transport. This suggests that high intracellular Li+ may be harmful.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC294618 | PMC |
http://dx.doi.org/10.1128/jb.144.1.192-199.1980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!