Energy-dependent proton--potassium exchange in E. coli is suppressed by both ionophores and the inhibitor of hydrogen pumps N,N'-dichlohexilcarbodimide (DCCD). The ratio of DCCD-sensitive fluxes of H+ and K+ is equal to 2:1 and does not depend upon the values of ionic fluxes, external pH, osmolarity and temperature. Bacteria can absorb synthetic cation tetraphenilphosphonium (TPP+) both in the absence of glucose and at addition of this source of energy. In the presence of glucose TPP+-ions are taken up by cells during the first 5-10 min and then they leave cells. Such glucose--dependent kinetics of TPP+ accumulation coincides with that for the first rapid phase of K+ uptake, but the process is observed, only if the glucose--independent absorption of TPP+ is small. The amount of accumulated TPP+ may be ascribed to the membrane potential of E . coli equalling--180mV. It is therefore considered that electrogenic proton-potassium pump sensitive to external osmolarity operates in E. coli cell membrane and exchanges 2H+ of the cell for 1K+ of external medium.

Download full-text PDF

Source

Publication Analysis

Top Keywords

external osmolarity
8
[proton-potassium exchange
4
exchange escherichia
4
escherichia coli]
4
coli] energy-dependent
4
energy-dependent proton--potassium
4
proton--potassium exchange
4
exchange coli
4
coli suppressed
4
suppressed ionophores
4

Similar Publications

Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.

View Article and Find Full Text PDF

Propagation of membrane tension mediates mechanical signal transduction along surfaces of live cells and sets the time scale of mechanical equilibration of cell membranes. Recent studies in several cell types and under different conditions revealed a strikingly wide variation range of the tension propagation speeds including extremely low ones. The latter suggests a possibility of long-living inhomogeneities of membrane tension crucially affecting mechano-sensitive membrane processes.

View Article and Find Full Text PDF

The cyclopoid copepod species Apocyclops royi has attracted significant attention due to its importance in marine food webs and its role as a vital food source for many marine organisms, particularly marine fish larvae. This study aims to understand the activity patterns, osmoregulation mechanisms, and physiological adaptations of A. royi in response to acute decreasing salinities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!