Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect low
4
low molecular-weight
4
molecular-weight leukocyte
4
leukocyte dialysate
4
dialysate endogenous
4
endogenous colony-formation
4
colony-formation mouse]
4
[effect
1
molecular-weight
1
leukocyte
1

Similar Publications

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

Background: A number of efforts have been made to tailor behavioral healthcare treatments to the variable needs of patients with low back pain (LBP). The most common approach involves the STarT Back Screening Tool (SBST) to triage the need for psychologically informed care, which explores concerns about pain and addresses unhelpful beliefs, attitudes, and behaviors. Such beliefs that pain always signifies injury or tissue damage and that exercise should be avoided have been implied as psychosocial mediators of chronic pain and can impede recovery.

View Article and Find Full Text PDF

Background: There is debate as to whether kinematic TKA or mechanical alignment TKA is superior. Recent systematic reviews have suggested that kinematically aligned TKAs may be the preferred option. However, the observed differences in alignment favoring kinematic alignment may not improve outcomes (performance or durability) in ways that patients can perceive, and likewise, statistical differences in outcome scores sometimes observed in clinical trials may be too small for patients to notice.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Background: Self-guided internet-delivered cognitive behavioral therapy (ICBT) achieves greater reach than ICBT delivered with therapist guidance, but demonstrates poorer engagement and fewer clinical benefits. Alternative models of care are required that promote engagement and are effective, accessible, and scalable.

Objective: This randomized trial evaluated whether a stepped care approach to ICBT using therapist guidance via videoconferencing for the step-up component (ICBT-SC[VC]) is noninferior to ICBT with full therapist delivery by videoconferencing (ICBT-TG[VC]) for child and adolescent anxiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!