Concanavalin A-induced activation of thymus cells compared to spleen or lymph node activation is extremely sensitive to the inhibitory effect of hydrocortisone (HC). This inhibitory effect of thymus cells, as observed at concentrations of 10(-7) M and higher, can be abrogated (at concentrations of up to 10(-5) M HC) by the addition of culture supernatants containing the product of activated T cells--Interleukin 2 (IL2), but not the supernatants containing the product of activated macrophages--Interleukin 1 (IL1). The protective effect of the IL2-containing supernatants can in part be removed by absorption with T cell blasts, but not B cell blasts. These results support the following notion of the mechanism of T cell activation. IL1 induces IL2 production by helper T cells and IL2, in turn, initiates proliferation of the sensitive T cells with IL2 receptors. These observations suggest that the inhibitory effect of HC on thymus cell activation results from inhibition of IL2 production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0192-0561(82)90013-3 | DOI Listing |
Immunology
January 2025
Anatomy, Dokkyo Medical University, Mibu, Tochigi, Japan.
Dendritic cells (DCs), the primary antigen-presenting cells, have traditionally been identified by CD103 molecules in rats, whereas mouse and human DCs are identified by CD11c molecules. However, this history does not preclude the existence of CD103 DCs in rats. To explore this possibility, we examined MHCII cells in rat spleen and thymus, identifying a novel population of CD103MHCIICD45RCD172a cells.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Clinical Genetics, Rennes University Hospital, Rennes, France.
Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.
View Article and Find Full Text PDFCell Res
January 2025
Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Organ transplantation is the last-resort option to treat organ failure. However, less than 10% of patients benefit from this only option due to lack of major histocompatibility complex (MHC)-matched donor organs and 25%-80% of donated organs could not find MHC-matched recipients. T cell allorecognition is the principal mechanism for allogeneic graft rejection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!