Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Faculty of Engineering Sciences Institute of Mechatronics and System Dynamics, University of Duisburg-Essen, 47057, Duisburg, Germany.
Hybrid transmissions have attracted great attention in the automotive industry due to their energy-saving, low-emission properties, and have become a focus of research and development. This paper presents a new method to design the configuration of two mode power split hybrid transmission using the combination of the simple planetary gear trains (PGT). For this purpose, the hybrid transmission structure is divided into two substructures, which achieve different operation modes respectively.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.
View Article and Find Full Text PDFJ Environ Manage
January 2025
University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550 Stuttgart, Germany; South Ural State University (National Research University), Chelyabinsk, Russian Federation. Electronic address:
Stringent sulfur removal regulations from transportation fuels from typical levels of 500 ppm to ultra-low levels of 10 ppm (BS-6 standard) present a critical challenge for the crude processing industry. This research thoroughly investigates emerging desulfurization technologies, with a focus on nanocomposite (NC) materials that exhibit exceptional sulfur removal efficiency. Advanced nanocomposite catalysts, such as (TBA)PWFe@TiO@PVA, have near-complete removal rates of 96-99% for complicated sulfur compounds like dibenzothiophene (DBT) and derivatives.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!