Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cells via phase-contrast or Nomarski optics (magnification, 400--600) indicates that cells range between 150 and 350 micrometers in length and 4 and 7 micrometers in diameter. The mean sarcomere length in relaxed, quiescent atrial cells in 2.05 micrometer. Conventional electrophysiological measurements have been made. In normal Ringer's solution (2.5 mM K+, 2.5 mM Ca++) acceptable cells have stable resting potentials of about -88 mV, and large (125 mV) long-duration (approximately 720 ms) action potentials can be elicited. The Vm vs. log[K+]0 relation obtained from isolated cells is similar to that of the intact atrium. The depolarizing phase of the action potential of isolated atrial myocytes exhibits two pharmacologically separable components: tetrodotoxin (10(-6) g/ml) markedly suppresses the initial regenerative depolarization, whereas verapamil (3 x 10(-6) M) inhibits the secondary depolarization and reduce the plateau height. A bridge circuit was used to estimate the input resistance (220 +/- 7 M omega) and time constant 20 +/- 7 ms) of these cells. Two-microelectrode experiments have revealed small differences in the electrotonic potentials recorded simultaneously at two different sites within a single cell. The equations for a linear, short cable were used to calculate the electrical constants of relaxed, single atrial cells: lambda = 921.3 +/- 29.5 micrometers; Ri = 118.1 +/- 24.5 omega cm; Rm = 7.9 +/- 1.2 x 10(3) omega cm2; Cm = 2.2 +/- 0.3 mu Fcm-2. These results and the atrial cell morphology suggest that this preparation may be particularly suitable for voltage-clamp studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228627 | PMC |
http://dx.doi.org/10.1085/jgp.78.1.19 | DOI Listing |
Biomedicines
January 2025
Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia.
Infective endocarditis (IE) is an infectious disease caused by the hematogenous dissemination of bacteria into heart valves. Improving the identification of pathogens that cause IE is important to increase the effectiveness of its therapy and reduce the mortality caused by this pathology. Ten native heart valves obtained from IE patients undergoing heart valve replacements were analyzed.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
J Inflamm Res
January 2025
Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: The common occurrence of atrial fibrillation (AF) as a cardiac arrhythmia, along with its link to sleep deprivation (SD), is gaining more acknowledgment. Even with progress in comprehending the development of AF, the molecular connections between SD and AF are still not well-defined. The objective of this research was to pinpoint the shared molecular routes responsible for SD-induced AF and investigate possible treatment targets.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!