Micromonospora chalcea subsp. izumensis produces a novel beta-lactamase inhibitor izumenolide (EM4615). Isolation of izumenolide was performed by extraction into butanol under acidic conditions and then back extraction into water at neutrality. The compound was precipitated from the aqueous phase by the addition of calcium or barium salts. Further purification was achieved by distribution in BuOH - 1 N NaOH. Izumenolide is a macrolide containing sulfate ester groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7164/antibiotics.33.1256 | DOI Listing |
Int J Mol Sci
January 2025
College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary.
In this study, the mechanisms implicated in delafloxacin resistance in strains were investigated. Delafloxacin is a novel, broad-spectrum fluoroquinolone that has been approved for clinical application. In our study, 43 strains were assessed, antimicrobial susceptibility testing was performed via the broth microdilution method, and the minimum inhibitory concentration (MIC) values for ciprofloxacin, delafloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, and imipenem were determined.
View Article and Find Full Text PDFMicrob Drug Resist
January 2025
Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Türkiye.
Drugs
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China. Electronic address:
The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!