Download full-text PDF |
Source |
---|
Cell Chem Biol
January 2025
Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:
Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking.
View Article and Find Full Text PDFBio Protoc
January 2025
Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, USA.
Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging.
View Article and Find Full Text PDFbioRxiv
January 2025
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Spatially resolved transcriptomics has made it possible to study the subcellular organization of mRNA, a critical aspect of cellular function. However, there is a dearth of analytical tools to identify and interpret the functional significance of subcellular spatial distribution patterns. To address this, we present CellSP, a computational framework for identifying, visualizing, and characterizing consistent subcellular spatial patterns of mRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!