Procedures for evaluating the efficacy of chemotherapeutic agents in an infant rat model of Haemophilus influenzae meningitis were developed. The results of efficacy studies with ampicillin, chloramphenicol, cefamandole, cefoxitin, and SQ 13,426 were compared to activity in vitro. While most of the drugs tested were very active against the two strains of H. influenzae used in vitro, this activity was not in all cases translated into efficacy in vivo. Pharmacokinetic studies using ampicillin or chloramphenicol demonstrated the presence of each antibiotic at the foci of infection in concentrations found to be bactericidal in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000237882 | DOI Listing |
Mikrochim Acta
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
A new methodology is presented for the rapid, specific, and sensitive detection of irinotecan (CPT-11), a chemotherapeutic agent utilized in the treatment of cancer, along with its metabolically active derivative, SN-38, via laser desorption/ionization mass spectrometry (LDI MS). The method includes the detection of camptothecin (CPT), which can be utilized as an internal standard for the quantitative assessment of both CPT-11 and SN-38 in mouse serum. The approach utilizes a plasmonic two-dimensional (2D) black phosphorus nanosheet (BPN)-gold nanomatrix (BP@Au) in LDI MS.
View Article and Find Full Text PDFUrologie
January 2025
Klinik für Urologie, Campus Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Deutschland.
This article provides a comprehensive overview of the current treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC) following the failure of first-line therapy. Although significant progress has been made in the primary treatment of hormone-sensitive prostate cancer, the management of mCRPC remains a clinical challenge. The article outlines the diagnostic criteria for mCRPC, which can be confirmed through biochemical progression and imaging techniques.
View Article and Find Full Text PDFNanoscale
January 2025
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.
View Article and Find Full Text PDFBioinorg Chem Appl
January 2025
Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.
The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating innovative therapeutic approaches. Polymer-based nanotechnology has emerged as a promising solution, offering precise drug delivery, enhanced blood-brain barrier (BBB) penetration, and adaptability to the tumor microenvironment (TME). This review explores the diverse applications of polymeric nanoparticles (NPs) in GBM treatment, including delivery of chemotherapeutics, targeted therapeutics, immunotherapeutics, and other agents for radiosensitization and photodynamic therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!