Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9969(81)90005-4DOI Listing

Publication Analysis

Top Keywords

calcium binding
4
binding organic
4
organic matrix
4
matrix developing
4
developing bovine
4
bovine enamel
4
calcium
1
organic
1
matrix
1
developing
1

Similar Publications

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Over the past years, global pesticide use has increased by 20%. New insecticidal molecules, like cyantraniliprole, aim to reduce side effects due to the high toxicity of pesticides and their harmful effects on health and the environment. Its mechanism involves binding to ryanodine receptors, causing rapid calcium ion release.

View Article and Find Full Text PDF

Introduction: Copine-3 (CPNE3) is a conservative calcium-dependent phospholipid-binding protein belonging to the copines protein family. CPNE3 has been implicated in the development and progression of several diseases, including cancer.

Method: Herein, we investigated the molecular mechanisms through which CPNE3 regulates the migration of lung adenocarcinoma (LUAD) cells in vitro.

View Article and Find Full Text PDF

Background: Torreya grandis, a prominent tree species of the autochthonous subtropical region of China, possesses a drupe-like fruit containing a nut that is rich in nutrients and bioactive compounds. However, the effect of calcium (Ca) sugar alcohol (CSA), a newly developed chelated Ca-fertilizer, on the secondary metabolism of phenolics in T. grandis nuts is largely unknown, for which transcriptomic and metabolomic analysis was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!